On Approximately Fair Cost Allocation in Euclidean TSP Games
نویسندگان
چکیده
We consider the problem of allocating the cost of an optirnal traveling salesman tour in a fair way among the nodes visited; in particular, we focus on the case where the distance matrix of the underlying TSP problem satisfies the triangle inequality. We thereby use the model of TSP games in the sense of cooperative game theory. We give examples showing that the core of such games may be empty, even for the case of Euclidean distances. On the positive, we develop an LP-based allocation rule guaranteeing that no coalition pays more than c~ times its own cost, where a is the ratio between the optimal TSP-tour and the optimal value of its Held-Karp relaxation, which is also known as the solution over the "subtour polytope". A well-known conjecture states that c~ < 4 5We also exhibit examples showing that this ratio cannot be improved below 4 Summary. Wir betrachten die Aufgabe, die Kosten einer optimalen Traveling-Salesman-Tour fair unter den besuchten Knoten zu verteilen; insbesondere untersuchen wir den Fall, dab die Kostenmatrix des zugrundeliegenden TSP-Problems die Dreiecksungleichung erRillt. Dazu wird das Modell von TSP-Spielen im Sinne der kooperativen Spieltheorie benutzt. Wir zeigen anhand eines Beispiels, dab der Core eines solchen Spiels leer sein kann, selbst im Falle euklidischer Distanzen. Andererseits geben wit eine LP-basierte Verteilungsregel an, die garantiert, dag keine Koalition mehr als das c~-fache ihrer eigenen Kosten bezaahlen mug, wobei c~ das Verh/iltnis zwischen den Kosten einer optimalen TSPTour und dem Optimum der Held-Karp-Relaxation ist, die auch als L6sung fiber dem "subtour polytope" bekannt ist. 4 Abschliegend Es wird allgemein vermutet, dab ct _< 5" geben wir eine Klasse yon Beispielen an, die beweist, dab keine allgemeine Verteilungsregel ftir das TSP-game ein * Parts of this work were done while the author was staying at the Department of Applied Mathematics and Statistics, SUNY Stony Brook, NY 11794-3600, during a visit at RUTCOR, Rutgers University, and during a stay at Tel Aviv University; support by NSF Grants ECSE-8857642 and CCR-9204585. ** Parts of this work were done while the author was visiting at RUTCOR, Rutgers University, supported by SFB 303 (Deutsche Forschungsgemeinschaft). Correspondence to: W. Hochst~ittler and S.P. Fekete 4 zwischen der Belastung generell besseres Verh~iltnis ats 5 einer Koalition und ihren Kosten garantieren kann.
منابع مشابه
Angewandte Mathematik Und Informatik Universit at Zu K Oln on Approximately Fair Cost Allocation in Euclidean Tsp Games on Approximately Fair Cost Allocation in Euclidean Tsp Games
We consider the problem of allocating the cost of an optimal traveling salesman tour in a fair way among the nodes visited; in particular, we focus on the case where the distance matrix of the underlying TSP problem satisses the triangle inequality. We thereby use the model of TSP games in the sense of cooperative game theory. We give examples showing that the core of such games may be empty, e...
متن کاملA Closed-Form Formula for the Fair Allocation of Gains in Cooperative N-Person Games
Abstract This paper provides a closed-form optimal solution to the multi-objective model of the fair allocation of gains obtained by cooperation among all players. The optimality of the proposed solution is first proved. Then, the properties of the proposed solution are investigated. At the end, a numerical example in inventory control environment is given to demonstrate the application and t...
متن کاملCooperative Benefit and Cost Games under Fairness Concerns
Solution concepts in cooperative games are based on either cost games or benefit games. Although cost games and benefit games are strategically equivalent, that is not the case in general for solution concepts. Motivated by this important observation, a new property called invariance property with respect to benefit/cost allocation is introduced in this paper. Since such a property can be regar...
متن کاملIndustrial Symbiotic Relations as Cooperative Games
In this paper, we introduce a game-theoretical formulation for a specific form of collaborative industrial relations called “Industrial Symbiotic Relation (ISR) games” and provide a formal framework to model, verify, and support collaboration decisions in this new class of two-person operational games. ISR games are formalized as cooperative cost-allocation games with the aim to allocate the to...
متن کاملOn Euclidean Vehicle Routing with Allocation
The (Euclidean) Vehicle Routing Allocation Problem (VRAP) is a generalization of Euclidean TSP. We do not require that all points lie on the salesman tour. However, points that do not lie on the tour are allocated, i.e., they are directly connected to the nearest tour point, paying a higher (per-unit) cost. More formally, the input is a set of points P ⊂ R and functions α : P → [0,∞) and β : P ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Electronic Colloquium on Computational Complexity (ECCC)
دوره 2 شماره
صفحات -
تاریخ انتشار 1995